If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2+5c-1=0
a = 6; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·6·(-1)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*6}=\frac{-12}{12} =-1 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*6}=\frac{2}{12} =1/6 $
| 15=2(2x+1)+5 | | 15x-29=7x+83 | | (x2+4)2=0 | | 5q-2q+3=3(q-2) | | -5x+7=-4x+2 | | 13x+17=4x-1 | | 6x+9=2×+1 | | 4x+5=3(2x-5)-2 | | 8/x-5/3=14/(3x) | | -12=3(2x+3)+3 | | x-8-3-6*4=36 | | 2w+2w=560 | | 4+4/x=-2 | | -12=2x+4=8 | | 14x+33=6x-47 | | 4(x+2)+10=-18 | | X-25=-3x-21 | | 2x=6x-8/5 | | 105x38=3990 | | 5w/2-(3/4-2/3)=0 | | 5w/2=3/4-2/3 | | 4(3a-)+2(5a+11)-14a-21=5 | | 2b-40=10 | | 4+3c(T+5)=48 | | 2(d+3)+3(d+1)=24 | | 3=51–2x² | | m+3m-180=0 | | 5^(n)*25^(2n-1)=125 | | 3×7x=7×3x | | 3,10=x/100 | | m2+3m-180=0 | | -9|-6x+5|+8=-37 |